
Counting linear extensions with volume
computation

By

Reyan Ahmed

Mentors:

Vissarion Fisikopoulos
Elias Tsigaridas
Matias Bender

Final submission report

Google Summer of Code
GSoC

&

Volume Estimation
GeomScale

September 9, 2022

1 Introduction

We have worked on the problem of counting linear extensions. In this problem
of counting the linear extensions, we are given an initial partial order P , which
is also known as partially ordered set (poset). The objective of this problem
is to generate all orders (linear extensions) that preserve P . However, there
can be an exponential number of such orders. Hence the running time to count
the number of total orders that preserves P will be exponential. To get rid of
exponential computation, we will approximate the number of linear extensions
using volume computation. We will develop different approximation algorithms
and compare their performance.

Figure 1: An example of linear extensions. On the left side, we see a partially
ordered set (poset). There is no relation between the elements b and c. On the
right side, we see all six complete/total orders of the poset.

2 Related Work

Counting linear extensions has many important applications [8, 9]. The fastest
known dynamic programming requires exponential time and space [3, 5]. A
dynamic programming relies on a recursive formulation of the problem. Several
methods have been proposed for counting linear extensions by recursively de-
composing the task into subproblems. Each linear extension of P begins with
some minimal element x ∈ P , and the number of extensions that begin with x
equals ℓ(P\x). Therefore, we have that,

ℓ(P) =
∑

x∈min(P)

ℓ(P\x) (1)

where min(P) denotes the set of minimal elements of P .
For an arbitrary element x ∈ P , we say that a partition of P\x into a pair

of sets (D,U) is admissible if D is a downset that contains all predecessors of

1

x (and U an upset that contains all successors of x). Equivalently, a partition
is admissible if and only if there is at least one linear extension σ such that
σ(d) < σ(x) < σ(u) for all d ∈ D and u ∈ U . Choosing a linear extension of P
is equivalent to choosing such a partition and ordering D and U independently.
Thus, we have that

ℓ(P) =
∑

(D,U)

ℓ(D) · ℓ(U) (2)

where (D,U) runs over all admissible partitions.
We say that a non-empty set of elements S ⊂ P is a static set if every

element in S is comparable with every element in P\S and if no proper subset
of S has this property. It is known [7] that either P has no static sets, or there
exists a unique partition of P into static sets S1, · · · , Sk. If the partition exists,
a linear extension is obtained by ordering each Si independently, and therefore
it holds that

ℓ(P) =

k∏
i=1

ℓ(Si) (3)

If the graph representation of P is disconnected, i.e., if P can be partitioned
into sets A and B such that a and b are incomparable for all a ∈ A and b ∈
B, then taking a linear of extension of P is equivalent to ordering A and B
independently and then interleaving them. Thus, in this case we have

ℓ(P) = ℓ(A) · ℓ(B) ·
(
|P |
|A|

)
(4)

There are several MCMC based approximations that have been proposed [1,
11]. The latter improvements were based on rapidly mixing Markov chains in
the set of linear extensions [6]. In practice, approximate counting of linear ex-
tensions can take hours for a few hundred elements [11]. It is well known that
we can represent a partial order with a convex polyhedron, namely order poly-
tope [10]. Furthermore, the number of linear extensions is equal to the volume
of the order polytope. To the best of our knowledge, there is no algorithm that
counts linear extensions through volume calculations of order polytopes. How-
ever, there are a few practical algorithms for estimating the volume of a convex
polytope; Volesti provides the most efficient implementations [4].

3 Preliminaries

A partially ordered set (also called a poset) is a set P equipped with a binary
relation ≤ satisfying the following three properties:

1. If x ∈ P , then x ≤ x in P (reflexive property).

2. If x, y ∈ P, x ≤ y in P and y ≤ x in P then x = y (antisymmetric
property).

2

3. If x, y, z ∈ P, x ≤ y in P and y ≤ z in P , then x ≤ z in P (transitive
property).

Let X be a set. A binary relation P is a subset of X ×X. If P is reflexive
then ∀x ∈ X, (x, x) ∈ P .

We can define different relational operations similar to the ≤ operation. For
example, x < y in P means x ≤ y and x ̸= y. Also, y > x in P means the
same as x < y. Similarly, x ≤ y means the same as y ≥ x. One can define
these operators in a way different than the traditional way. For example, when
P is a collection of sets, set x ≤ y in P when x is a subset of y. In this poset
{2, 5} < {2, 5, 7, 8} and {5, 8, 9} ≥ {5, 8, 9}. When P is a set of positive integers,
set ≤ in P when x divides y without remainder. In this poset, 15 < 105 and
12 < 48. However, 17 is not less than 1, 000, 000, 000.

The familiar binary operation ≤ on number systems like Z (integers), Q
(rationals), R (reals) is a partial order. However, in each of these three cases,
the binary relation ≤ satisfies a fourth condition: for all x, y either x ≤ y in P
or y ≤ x in P . Partial order satisfying this condition are called linear orders or
total orders.

When x and y are distinct points in a poset P , we say that x is covered by y
in P when x < y in P and there is no point z with x < z < y in P . Alternatively,
we may say that y covers x in P . With inclusion, {2, 5} is covered by {2, 5, 7} but
{4, 6, 7} is not covered by {4, 6, 7, 9, 11, 12}. With division, 15 is covered by 105
because 105 = 15×7. However, 14 is not covered by by 84 since 84 = 14×2×3
(14× 2 and 14× 3 are between 14 and 84).

When P is a poset, we associate with P a graph G called the cover graph of
P . The vertices of G are the vertices of P . We connect two vertices u, v in G if
either u covers v or v covers u. If G is the cover graph of a poset P , a straight
line drawing of G is called an ordered diagram if u is higher in the plane than v
whenever u covers v in P .

Given a poset P , two distinct elements x, y are comparable when either x < y
or y < x in P . In the comparability graph of P the vertex set is equal to the
elements of P . Two distinct elements x, y are adjacent in the comparable graph
if x and y are comparable in P . Similarly we can define the incomparability
graph.

A chain is a subset in which every element is comparable. A chain ismaximal
if no superset is a chain. The height of a poset is the size of a chain that has the
maximum number of elements. An antichain is a subset in which every element
is incomparable. An antichain is maximal if no superset is an antichain. The
width of a poset is the size of an antichain that has the maximum number of
elements.

4 Our approach

We have used volume estimation to approximate the number of linear extensions
of a poset. We first briefly talk about the idea of volume estimation. A classical

3

example of this technique is the approximation of π. Let us assume we have a
random number generator and we want to estimate the value of π. Each time we
uniformly sample to numbers from the range [−1, 1]. The pair of numbers can be
viewed as a coordinate inside the square [−1, 1]× [−1, 1]. We can draw a circle
inside the square such that the perimeter of the circle touches the boundary
of the circle. The radius of the circle is equal to one. Let us sample a pair of
points inside the square. We can consider the point as a vector from the origin.
If the length of the vector is less than or equal to one, then the point is inside
the circle. Otherwise it is outside the circle.

We now draw random points many times while counting the number of times
the point falls inside the circle. Since we are generating the points uniformly
from the square, the ratio of the number of times the circle falls inside the circle
to the total number of samples should be approximately equal to the ratio of
the area of the circle to the area of the square. The more samples we take, the
more accurate the approximation will be. Now the ratio of the circle is πr2,
where r is the radius of the circle. Recall that r = 1, hence the area of the
circle is π. On the other hand, the area of the square is 4. Hence, we have the
following observation:

π

4
=

Number of samples inside circle

Total number of samples

π =
4×Number of samples inside circle

Total number of samples

Figure 2: Illustrating how volume estimation can help determine the value of
π. On the left-hand side we show the sample points, the blue points are outside
the circle, and the red points are inside the circle. On the right-hand side, we
see that as the number of samples increases, our approximation of π gets closer
to the real value of π.

Now we provide the high-level idea of computing the number of linear ex-
tensions of a poset using volume estimation. Stanley [10] showed that one can

4

generate a polytope from a poset. Fisikopoulos et al. [4] developed a software
package named volesti to compute the volumes of polytopes efficiently. Chalkis
et al. [2] showed that one can compute the number of linear extensions by com-
puting the volumes of the polytope of the poset. The goal of this project is:

• Implementing Gaussian Hamiltonian Monte Carlo random walk for count-
ing linear extensions.

• Implementing the general mass matrix in the gaussian cooling algorithm
of the volesti package.

The Hamiltonian Monte Carlo method has three main steps:

1. Picking a random velocity

2. Travelling deterministic-ally to the level set surface of the Hamiltonian

3. Projecting down in configuration space

Here is the pseudo code of the Hamiltonian Monte Carlo random walk:

Algorithm 1 Hamiltonian Monte Carlo with reflections

Choose the traveling time L ∼ unif(0, 1)
Pick the momentum p ∼ N (0, In)
if If the flow ϕ̃L(q

(t), p) is defined and does not involve more than M reflec-
tions between t = 0 and L, and if ϕ̃L(q

(t), p) ∈ Q then

Take q(t+1) = ϕ̃
(q)
L (q(t), p)

else
q(t+1) = q(t)

end if

The main code snippet of the algorithm looks like the following:

template

<

typename GenericPolytope

>

inline void apply(GenericPolytope const& P,

Point& p,

NT const& a_i,

unsigned int const& walk_length,

RandomNumberGenerator &rng)

{

unsigned int n = P.dimension();

NT T;

for (auto j=0u; j<walk_length; ++j)

{

5

https://github.com/GeomScale/volesti

T = rng.sample_urdist() * _Len;

_v = GetDirection<Point>::apply(n, rng, false);

Point p0 = _p;

int it = 0;

while (it < _rho)

{

auto pbpair = P.trigonometric_positive_intersect(_p, _v,

_omega, _facet_prev);

if (T <= pbpair.first) {

update_position(_p, _v, T, _omega);

break;

}

_lambda_prev = pbpair.first;

T -= _lambda_prev;

update_position(_p, _v, _lambda_prev, _omega);

P.compute_reflection(_v, _p, pbpair.second);

it++;

}

if (it == _rho){

_p = p0;

}

}

p = _p;

}

The cooling Gaussian method to compute volume first computes an anneal-
ing schedule. And then later uses that schedule to compute the volume. We
implement the general mass matrix inside the schedule computation. The code
snippet looks like this:

Point mean_point(n);

for(int i=0;i<n;i++)

{

mean_point.set_coord(i, 0);

NT sum = 0;

for(int j=0;j<points.size();j++)

sum += points[j][i];

mean_point.set_coord(i, sum/n);

}

for(int i=0;i<n;i++)

{

for(int j=0;j<n;j++)

{

covar(i, j) = 0;

for(int k=0;k<points.size();k++)

covar(i, j) += (points[k][i]-mean_point[i])

*(points[k][j]-mean_point[j]);

6

covar(i, j) = covar(i, j)/(n-1);

}

}

5 Experimental result

We first run different well-known algorithms as well as the algorithms of the
volesti packages and compare the running times in Table 1. We provide the
running times of graphs having average degree 3. We denote volume estima-
tion by VE in the acronyms. We have used 3 volume methods: cooling con-
vex bodies (CB), cooling Gaussians (CG), and sequence of balls (SOB). We
have used 2 rounding methods: minimum ellipsoid (ME) and SVD. We denote
the algorithm by concatenation of acronyms, for example, VE-CB-ME denotes
the volume estimation method that uses cooling convex bodies as the volume
method and minimum ellipsoid as the rounding method. The walk length is
10 + d/10, where d is the dimension of the polytope. And the error is equal to
0.1. We have run the algorithms of the AAAI 2018 paper [11]. We denote the
telescoping product algorithm by TP-SLS. We denote the decomposition tele-
scopic product algorithm by DTP-SLS. We denote the decomposition telescopic
product using the Gibbs sampler by DTP-GLS. We denote the tootsie pop al-
gorithm by TP-basic. We denote the exact dynamic programming by DP. We
denote the variable elimination via inclusion-exclusion by VEIE. We also use
the algorithms of IJCAI 2018 [12]. We denote relaxation tootsie pop, trivial
relaxation tootsie pop, extension tootsie pop, and adaptive relaxation Monte
Carlo by RTP, TRTP, ETP, and ARMC respectively. From the figures, we can
see that there are several efficient algorithms in the volesti packages to compute
linear extensions.

7

ARMC DP DTP-GLS DTP-SLS

ETP RTP TP-basic TP-SLS

TP TRTP VE-CB-ME VE-CB-SVD

VE-CG-ME VE-SG-SVD VE-SOB-ME VE-SOB-SVD

VEIE

Table 1: Running times of graphs having average degree 3.

Since the illustration of Table 1 is a little congested we take out some of
the algorithms that perform well from all those algorithms and make a separate
comparison of those well-performing algorithms in Table 2. We can see the
algorithm of the volesti package provides efficient solutions with good quality.

8

avg. degree 3

avg. degree 3
Time Extensions

Table 2: Running times and number of extensions. We denote the volume
estimation method that uses cooling convex bodies as the volume method and
minimum ellipsoid as the rounding method by VE-CB-ME. The walk length is
10 + d/10, where d is the dimension of the polytope. And the error is equal to
0.1. We have compared the algorithm of the AAAI 2018 paper. We denote it by
ARMC (adaptive relaxation Monte Carlo). We also compare the main algorithm
of IJCAI 2018. We denote it by RTPA (relaxation tootsie pop algorithm).

Since we now know that there are several algorithms in the volesti package
that can be used to approximate linear extensions, we have implemented the
Gaussian Hamiltonian Monte Carlo algorithm in the volesti package framework
and compared it with other algorithms in the package. We illustrate the results
in Table ??. We can see although our new method is providing correct results,
however, it is slow.

9

Hypercubes
Time Volume

Table 3: Gaussian Hamiltonian Monte Carlo (HG) with different accuracy. Here,
we have used a walk length equal to 1. As we can see, the runtime gets slightly
better as the accuracy increases.

We now try tuning the parameters of the Hamiltonian Gaussian algorithm to
reduce the running time. For example, there is a parameter ρ in the algorithm
that controls the number of iterations of every step of the algorithm. We have
tried different values of ρ as illustrated in Table 4. We can see the running time
decreases as ρ decreases.

Hypercubes
Time Volume

Table 4: Gaussian Hamiltonian Monte Carlo (HG) with different values of ρ.
Here, we have used a walk length equal to 1. The diameter is set up to 2

√
dim

(The default parameter). Here, we have changed the value of the multiplier of
ρ by different factors (the default value was 100). As we can see, the runtime
decreases as the factor decreases.

There is another parameter which is called the diameter, we have tried dif-

10

ferent values of diameter as shown in Table 5. We can see that the smaller the
diameter, the better the running time is without that much change in volume.

Hyper-cubes
Time log(Volume)

Table 5: Here we have tried different diameters. The default diameter is 2 ∗√
dimension∗radius. Here, we have set different factors of

√
dimension∗radius

as diameter. We can see the smaller the factor, the better the run time without
that much change in volume.

We have tried tuning several other parameters including the accuracy, toler-
ance, walk length, and the number of steps. However, those parameters do not
have a large impact on running time. For example, we have shown the results
of tuning the accuracy parameter in Table 6.

Hypercubes
Time Volume

Table 6: Gaussian Hamiltonian Monte Carlo (HG) with different accuracy. Here,
we have used a walk length equal to 1. As we can see, the runtime gets slightly
better as the accuracy increases.

11

The window of the cooling Gaussian (CG) algorithm is another important
parameter. The default window size is 6d2 + 800, where d is the dimension
of the polytope. However, this default parameter was specified for the coor-
dinate hit and run (CHNR) walk. Since CHNR takes more time to mix, and
the time increases polynomially as the dimension increases, hence we specified
that window parameter. However, the Gaussian Hamiltonian Monte Carlo walk
(HG) can mix faster, hence we set the window parameter equal to 300 for this
random walk. And HG performs better than the CHNR walk in the cooling
Gaussian algorithm (CG-CHNR). We have shown the results in Table 7. The
HG algorithm takes more time than the cooling ball (CB) algorithm, however,
runs faster than the other algorithm.

Hypercubes
Time Volume

Table 7: Comparison of coordinate hit and run walk inside cooling Gaussian
(CG-CHNR), the Gaussian Hamiltonian Monte Carlo walk (HG) and the cooling
ball (CB) algorithm.

We run experiments to compare our implementation of the general mass
matrix. We compare the Hamiltonian Gaussian walk with the general mass
matrix (HG-GMM) to the Hamiltonian Gaussian walk with the SVD rounding
(HG-SVD). For this experiment, we use the skinny polytope. The results are
shown in Table 8. We can see that the accuracy degrades a little bit in HG-
GMM.

12

Skinny polytopes
Time Volume

Table 8: Comparison of the Hamiltonian Gaussian walk with the general mass
matrix (HG-GMM)to the Hamiltonian Gaussian walk with the SVD rounding
(HG-SVD).

6 Conclusion

We have implemented the Gaussian Hamiltonian Monte Carlo algorithm for
computing volume and integrated it to compute linear extensions. We have also
implemented the general mass matrix. We have done extensive experiments on
different datasets. By tuning different parameters we are able to improve the
running time compared to the existing Gaussian cooling algorithm. However,
our algorithm is still slower compared to the cooling ball technique. It remains
an interesting future direction to further improve the running time Gaussian
Hamiltonian Monte Carlo algorithm. Our implementation of the general mass
matrix is slightly less accurate, making the algorithm more accurate with faster
running time remains another future direction.

References

[1] Graham Brightwell and Peter Winkler. Counting linear extensions. Order,
8(3):225–242, 1991.

[2] Apostolos Chalkis and Vissarion Fisikopoulos. volesti: Volume ap-
proximation and sampling for convex polytopes in r. arXiv preprint
arXiv:2007.01578, 2020.

[3] Karel De Loof, Hans De Meyer, and Bernard De Baets. Exploiting the
lattice of ideals representation of a poset. Fundamenta Informaticae, 71(2-
3):309–321, 2006.

[4] Vissarion Fisikopoulos and Apostolos Chalkis. Package ‘volesti’. 2021.

13

[5] Kustaa Kangas, Teemu Hankala, Teppo Mikael Niinimäki, and Mikko
Koivisto. Counting linear extensions of sparse posets. In IJCAI, pages
603–609, 2016.

[6] Alexander Karzanov and Leonid Khachiyan. On the conductance of order
markov chains. Order, 8(1):7–15, 1991.

[7] Wing-Ning Li, Zhichun Xiao, and Gordon Beavers. On computing the
number of topological orderings of a directed acyclic graph. Congressus
Numerantium, 174:143–159, 2005.

[8] Christian Muise, J Christopher Beck, and Sheila A McIlraith. Optimal
partial-order plan relaxation via maxsat. Journal of Artificial Intelligence
Research, 57:113–149, 2016.

[9] Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto. Structure dis-
covery in bayesian networks by sampling partial orders. The Journal of
Machine Learning Research, 17(1):2002–2048, 2016.

[10] Richard P Stanley. Two poset polytopes. Discrete & Computational Ge-
ometry, 1(1):9–23, 1986.

[11] Topi Talvitie, Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto.
Counting linear extensions in practice: Mcmc versus exponential monte
carlo. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[12] Topi Talvitie, Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto.
A scalable scheme for counting linear extensions. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. International Joint Con-
ferences on Artificial Intelligence, 2018.

14

	Introduction
	Related Work
	Preliminaries
	Our approach
	Experimental result
	Conclusion

